ページの画像
PDF
ePub

ticle of offence and defence, we have teeth, talons, beaks, horns, stings, prickles, with (the most singular expedient for the same purpose) the power of giving the electric shock, and, as is credibly related of some animals, of driving away their pursuers by an intolerable fœtor, or of blackening the water through which they are pursued. The consideration of these appearances might induce us to believe, that variety itself, distinct from every other reason, was a motive in the mind of the Creator, or with the agents of his will.

To this great variety in organized life the Deity has given, or perhaps there arises out of it, a corresponding variety of animal appetites. For the final cause of this, we have not far to seek. Did all animals covet the same element, retreat, or food, it is evident how much fewer could be supplied and accommodated, than what at present live conveniently together, and find a plentiful subsistence. What one nature rejects, another delights in. Food which is nauseous to one tribe of animals, becomes, by that very property which makes it nauseous, an alluring dainty to another tribe. Carrion is a treat to dogs, ravens, vultures, fish. The exhalations of corrupted substances attract flies by crowds. Maggots revel in putrefaction.

CHAPTER XX.

OF PLANTS.

I THINK a designed and studied mechanism to be, in general, more evident in animals than in plants: and it is unnecessary to dwell upon a weaker argument, where a stronger is at hand. There are, however, a few observations upon the vegetable kingdom, which lie so directly in our way, that it would be improper to pass by them without notice.

The one great intention of nature in the structure of plants, seems to be the perfecting of the seed; and, what is part of the same intention, the preserving of it until it be perfected. This intention shows itself, in the first place, by the care which appears to be taken, to protect and ripen, by every advantage which can be given to them of situation in the plant, those parts which most immediately contribute to fructification, viz. the antheræ, the stamina, and the stigmata. These parts are usually lodged in the centre, the recesses, or the labyrinths of

the flower; during their tender and immature state, are shut up in the stalk, or sheltered in the bud; as soon as they have acquired firmness of texture sufficient to bear exposure, and are ready to perform the important office which is assigned to them, they are disclosed to the light and air, by the bursting of the stem, or the expansion of the petals; after which, they have, in many cases, by the very form of the flower during its blow, the light and warmth reflected upon them from the concave side of the cup. What is called also the sleep of plants, is the leaves or petals disposing themselves in such a manner as to shelter the young stems, buds, or fruit. They turn up, or they fall down, according as this purpose renders either change of position requisite. In the growth of corn, whenever the plant begins to shoot, the two upper leaves of the stalk join together, embrace the ear, and protect it till the pulp has acquired a certain degree of consistency. In some water-plants, the flowering and fecundation are carried on within the stem, which afterwards opens to let loose the impregnated seed 2. The pea or papilionaceous tribe, enclose the parts of fructification within a beautiful folding of the internal blossom, sometimes called, from its shape, the boat or keel; itself also protected under a penthouse formed by the external petals. This structure is very artificial; and what adds to the value of it, though it may diminish the curiosity, very general. It has also this farther advantage, (and it is an advantage strictly mechanical,) that all the blossoms turn their backs to the wind, whenever the gale blows strong enough to endanger the delicate parts upon which the seed depends. I have observed this a hundred times in a field of peas in blossom. It is an aptitude which results from the figure of the flower, and, as we have said, is strictly mechanical; as much so, as the turning of a weather-board or tin cap upon the top of a chimney. Of the poppy, and of many similar species of flowers, the head, while it is growing, hangs down, a rigid curvature in the upper part of the stem giving to it that position: and in that position it is impenetrable by rain or moisture. When the head has acquired its size, and is ready to open, the stalk erects itself, for the purpose, as it should seem, of presenting the flower, and with the flower, the instruments of fructification, to the genial influence of the sun's rays. This always struck me as a curious property; and specifically, as well as originally, provided for in the constitution of the plant: for, if the stem be only bent by the weight of the head, how comes it to straighten itself when

Philos. Transact. part ii. 1796, p. 502.

the head is the heaviest? These instances show the attention of nature to this principal object, the safety and maturation of the parts upon which the seed depends.

In trees, especially in those which are natives of colder climates, this point is taken up earlier. Many of these trees (observe in particular the ash and the horse-chestnut) produce the embryos of the leaves and flowers in one year, and bring them to perfection the following. There is a winter therefore to be gotten over. Now what we are to remark is, how nature has prepared for the trials and severities of that season. These tender embryos are, in the first place, wrapped up with a compactness, which no art can imitate; in which state, they compose what we call the bud. This is not all. The bud itself is enclosed in scales; which scales are formed from the remains of past leaves and the rudiments of future ones. Neither is this the whole. In the coldest climates, a third preservative is added, by the bud having a coat of gum or resin, which being congealed, resists the strongest frosts. On the approach of warm weather, this gum is softened, and ceases to be an hinderance to the expansion of the leaves and flowers. All this care is part of that system of provisions which has for its object and consummation, the production and perfecting of the seeds.

The SEEDS themselves are packed up in a capsule, a vessel composed of coats, which, compared with the rest of the flower, are strong and tough. From this vessel projects a tube, through which tube the farina, or some subtile fecundating effluvium that issues from it, is admitted to the seed. And here also occurs a mechanical variety, accommodated to the different circumstances under which the same purpose is to be accomplished. In flowers which are erect, the pistil is shorter than the stamina and the pollen, shed from the antheræ into the cup of the flower, is caught, in its descent, by the head of the pistil, called the stigma. But how is this managed when the flowers hang down, (as does the crown-imperial for instance,) and in which position, the farina, in its fall, would be carried from the stigma, and not towards it? The relative length of the parts is now inverted. The pistil in these flowers is usually longer, instead of shorter, than the stamina that its protruding summit may receive the pollen as it drops to the ground. In some cases, (as in the nigella,) where the shafts of the pistils or stiles are disproportionably long, they bend down their extremities upon the antheræ, that the necessary approximation may be effected.

But (to pursue this great work in its progress) the impreg

nation, to which all this machinery relates, being completed, the other parts of the flower fade and drop off, whilst the gravid seed-vessel, on the contrary, proceeds to increase its bulk, always to a great, and in some species (in the gourd, for example, and melon) to a surprising comparative size; assuming in different plants an incalculable variety of forms, but all evidently conducing to the security of the seed. By virtue of this process, so necessary, but so diversified, we have the seed, at length, in stone-fruits and nuts, incased in a strong shell, the shell itself enclosed in a pulp or husk, by which the seed within is or hath been fed; or, more generally, (as in grapes, oranges, and the numerous kinds of berries,) plunged overhead in a glutinous syrup, contained within a skin or bladder: at other times (as in apples and pears) embedded in the heart of a firm fleshy substance; or (as in strawberries) pricked into the surface of a soft pulp.

These and many more varieties exist in what we call fruits. In pulse, and grain, and grasses; in trees, and shrubs, and flowers; the variety of the seed-vessels is incomputable. We have the seeds (as in the pea tribe) regularly disposed in parchment pods, which, though soft and membranous, completely exclude the wet even in the heaviest rains; the pod also, not seldom (as in the bean) lined with a fine down; at other times (as in the senna) distended like a blown bladder: or we have the seed

* From the conformation of fruits alone, one might be led, even without experience, to suppose, that part of this provision was destined for the utilities of animals. As limited to the plant, the provision itself seems to go beyond its object. The flesh of an apple, the pulp of an orange, the meat of a plum, the fatness of the olive, appear to be more than sufficient for the nourishing of the seed or kernel. The event shows, that this redundancy, if it be one, ministers to the support and gratification of animal natures; and when we observe a provision to be more than sufficient for one purpose, yet wanted for another purpose, it is not unfair to conclude that both purposes were contemplated together. It favours this view of the subject to remark, that fruits are not (which they might have been) ready altogether, but that they ripen in succession throughout a great part of the year; some in summer; some in autumn; that some require the slow maturation of the winter, and supply the spring; also that the coldest fruits grow in the hottest places. Cucumbers, pine-apples, melons, are the natural produce of warm climates, and contribute greatly, by their coolness, to the refreshment of the inhabitants of those countries.

I will add to this note the following observation communicated to me by Mr. Brinkley.

"The eatable part of the cherry or peach first serves the purposes of perfecting the seed or kernel, by means of vessels passing through the stone, and which are very visible in a peach-stone. After the kernel is perfected, the stone becomes hard and the vessels cease their functions. But the substance surrounding the stone is not then thrown away as useless. That which was before only an instrument for perfecting the kernel, now receives and retains to itself the whole of the sun's influence, and thereby becomes a grateful food to man. Also what an evident mark of design is the stone protecting the kernel! The intervention of the stone prevents the second use from interfering with the first."

enveloped in wool, (as in the cotton-plant,) lodged (as in pines) between the hard and compact scales of a cone, or barricadoed (as in the artichoke and thistle) with spikes and prickles; in mushrooms, placed under a penthouse; in ferns, within slits in the back part of the leaf: or (which is the most general organization of all) we find them covered by strong, close tunicles, and attached to the stem according to an order appropriated to each plant, as is seen in the several kinds of grains and of grasses.

In which enumeration, what we have first to notice is, unity of purpose under variety of expedients. Nothing can be more single than the design; more diversified than the means. Pellicles, shells, pulps, pods, husks, skin, scales armed with thorns, are all employed in prosecuting the same intention. Secondly; we may observe, that in all these cases, the purpose is fulfilled within a just and limited degree. We can perceive, that if the seeds of plants were more strongly guarded than they are, their greater security would interfere with other uses. Many species of animals would suffer and many perish, if they could not obtain access to them. The plant would overrun the soil; or the seed be wasted for want of room to sow itself. It is sometimes, as necessary to destroy particular species of plants, as it is, at other times, to encourage their growth. Here, as in many cases, a balance is to be maintained between opposite uses. The provisions for the preservation of seeds appear to be directed, chiefly against the inconstancy of the elements, or the sweeping destruction of inclement seasons. The depredation of animals, and the injuries of accidental violence, are allowed for in the abundance of the increase. The result is, that out of the many thousand different plants which cover the earth, not a single species, perhaps, has been lost since the creation.

When nature has perfected her seeds, her next care is to disperse them. The seed cannot answer its purpose, while it remains confined in the capsule. After the seeds therefore are ripened, the pericarpium opens to let them out; and the opening is not like an accidental bursting, but, for the most part, is according to a certain rule in each plant. What I have always thought very extraordinary; nuts and shells, which we can hardly crack with our teeth, divide and make way for the little tender sprout which proceeds from the kernel. Handling the nut I could hardly conceive how the plantule was ever to get out of it. There are cases, it is said, in which the seed-vessel by an elastic jerk, at the moment of its explosion, casts the seeds

« 前へ次へ »