ページの画像
PDF
ePub

CHAPTER VII.

OF THE MECHANICAL AND IMMECHANICAL PARTS AND

FUNCTIONS OF ANIMALS AND VEGETABLES.

It is not that every part of an animal or vegetable has not proceeded from a contriving mind; or that every part is not constructed with a view to its proper end and purpose, according to the laws belonging to, and governing the substance or the action made use of in that part; or that each part is not so constructed as to effectuate its purpose whilst it operates according to these laws; but it is because these laws themselves are not in all cases equally understood; or, what amounts to nearly the same thing, are not equally exemplified in more simple processes, and more simple machines; that we lay down the distinction, here proposed, between the mechanical parts of animals and vegetables.

For instance: the principle of muscular motion, viz. upon what cause the swelling of the belly of the muscle, and consequent contraction of its tendons, either by an act of the will, or by involuntary irritation, depends, is wholly unknown to us. The substance employed, whether it be fluid, gaseous, elastic, electrical, or none of these, or nothing resembling these, is also unknown to us: of course, the laws belonging to that substance, and which regulate its action, are unknown to us. We see nothing similar to this contraction in any machine which we can make, or any process which we can execute. So far (it is confessed) we are in ignorance, but no farther. This power and principle, from whatever cause it proceeds, being assumed, the collocation of the fibres to receive the principle, the disposition of the muscles for the use and application of the power, is mechanical: and is as intelligible as the adjustment of the wires and strings by which a puppet is moved. We see, therefore, as far as respects the subject before us, what is not mechanical in the animal frame, and what is. The nervous influence (for we are often obliged to give names to things which we know little about)-I say the nervous influence, by which the belly, or middle of the muscle, is swelled, is not mechanical. The utility of the effect we perceive; the means, or the preparation of means, by which it is produced, we do not. But obscurity as to the origin of muscular motion brings no doubtfulness into our

observations, upon the sequel of the process. Which observations relate, 1st, to the constitution of the muscle; in consequence of which constitution, the swelling of the belly or middle part is necessarily and mechanically followed by a contraction of the tendons: 2dly, to the number and variety of the muscles and the corresponding number and variety of useful powers which they supply to the animal; which is astonishingly great 3dly, to the judicious, (if we may be permitted to use that term in speaking of the Author, or of the works, of nature,) to the wise and well-contrived disposition of each muscle for its specific purpose; for moving the joint this way, and that way, and the other way; for pulling and drawing the part, to which it is attached in a determinate and particular direction; which is a mechanical operation, exemplified in a multitude of instances. To mention only one: The tendon of the trochlear muscle of the eye, to the end that it may draw in the line required, is passed through a cartilaginous ring, at which it is reverted, exactly in the same manner as a rope in a ship is carried over a block or round a stay, in order to make it pull in the direction which is wanted. All this, as we have said, is mechanical; and is as accessible to inspection, as capable of being ascertained, as the mechanism of the automaton in the Strand. Supposing the automaton to be put in motion by a magnet, (which is probable,) it will supply us with a comparison very apt for our present purpose. Of the magnetic effluvium, we know perhaps as little as we do of the nervous fluid. But, magnetic attraction being assumed, (it signifies nothing from what cause it proceeds,) we can trace, or there can be pointed out to us, with perfect clearness and certainty, the mechanism, viz. the steel bars, the wheels, the joints, the wires, by which the motion so much admired is communicated to the fingers of the image: and to make any obscurity, or difficulty, or controversy in the doctrine of magnetism, an objection to our knowledge or our certainty, concerning the contrivance, or the marks of contrivance, displayed in the automaton, would be exactly the same thing, as it is to make our ignorance (which we acknowledge) of the cause of nervous agency, or even of the substance and structure of the nerves themselves, a ground of question or suspicion as to the reasoning which we institute concerning the mechanical part of our frame. That an animal is a machine, is a proposition neither correctly true nor wholly false. The distinction which we have been discussing will serve to shew how far the comparison, which this

expression implies, holds; and wherein it fails. And whether the distinction be thought of importance or not, it is certainly of importance to remember, that there is neither truth nor justice in endeavouring to bring a cloud over our understandings, or a distrust into our reasonings upon this subject, by suggesting that we know nothing of voluntary motion, of irritability, of the principle of life, of sensation, of animal heat, upon all which the animal functions depend; for, our ignorance of these parts of the animal frame concerns not at all our knowledge of the mechanical parts of the same frame. I contend, therefore, that there is mechanism in animals; that this mechanism is as properly such, as it is in machines made by art; that this mechanism is intelligible and certain; that it is not the less so, because it often begins or terminates with something which is not mechanical; that whenever it is intelligible and certain, it demonstrates intention and contrivance, as well in the works of nature, as in those of art; and that it is the best demonstration which either can afford.

But whilst I contend for these propositions, I do not exclude myself from asserting, that there may be, and that there are, other cases, in which, although we cannot exhibit mechanism, or prove indeed that mechanism is employed, we want not sufficient evidence to conduct us to the same conclusion.

There is what may be called the chymical part of our frame; of which, by reason of the imperfection of our chymistry, we can attain to no distinct knowledge; I mean, not to a knowledge, either in degree or kind, similar to that which we possess of the mechanical part of our frame. It does not, therefore, afford the same species of argument as that which mechanism affords; and yet it may afford an argument in a high degree satisfactory. The gastric juice, or the liquor which digests the food in the stomachs of animals, is of this class. Of all menstrua, it is the most active, the most universal. In the human stomach, for instance, consider what a variety of strange substances, and how widely different from one another, it, in a few hours, reduces to a uniform pulp, milk, or mucilage. It seizes upon every thing, it dissolves the texture of almost every thing that comes in its way. The flesh of perhaps all animals; the seeds and fruits of the greatest number of plants; the roots, and stalks, and leaves of many, hard and tough as they are, yield to its powerful pervasion. The change wrought by it is different from any chymical solution which we can produce, or with

which we are acquainted, in this respect as well as many others, that, in our chymistry, particularly menstrua act only upon particular substances. Consider moreover that this fluid, stronger in its operation than a caustic alkali or mineral acid, than red precipitate, or aqua-fortis itself, is nevertheless as mild, and bland, and inoffensive to the touch or taste, as saliva or gum-water, which it much resembles. Consider, I say, these several properties of the digestive organ, and of the juice with which it is supplied, or rather with which it is made to supply itself, and you will confess it to be entitled to a name, which it has sometimes received, that of "the chymical wonder of animal nature."

Still we are ignorant of the composition of this fluid, and of the mode of its action; by which is meant that we are not capable, as we are in the mechanical part of our frame, of collating it with the operations of art. And this I call the imperfection of our chymistry; for, should the time ever arrive, which is not perhaps to be despaired of, when we can compound ingredients, so as to form a solvent which will act in the manner in which the gastric juice acts, we may be able to ascertain the chymical principles upon which its efficacy depends, as well as from what part, and by what concoction, in the human body, these principles are generated and derived.

In the mean time, ought that, which is in truth the defect of our chymistry, to hinder us from acquiescing in the inference, which a production of nature, by its place, its properties, its action, its surprising efficacy, its invaluable use, authorizes us to draw in respect of a creative design?

Another most subtile and curious function of animal bodies is secretion. This function is semi-chymical and semi-mechanical; exceedingly important and diversified in its effects, but obscure in its process and in its apparatus. The importance of the secretory organs is but too well attested by the diseases, which an excessive, a deficient, or a vitiated secretion is almost sure of producing. A single secretion being wrong, is enough to make life miserable, or sometimes to destroy it. Nor is the variety less than the importance. From one and the same blood (I speak of the human body) about twenty different fluids are separated; in their sensible properties, in taste, smell, colour, and consistency, the most unlike one another that is possible; thick, thin, salt, bitter, sweet and, if from our own we pass to other species of animals, we find amongst their secretions not only the most va

rious, but the most opposite properties; the most nutritious aliment, the deadliest poison; the sweetest perfumes, the most fœtid odours. Of these the greater part, as the gastric juice, the saliva, the bile, the slippery mucilage which lubricates the joints, the tears which moisten the eye, the wax which defends the ear, are, after they are secreted, made use of in the animal œconomy; are evidently subservient, and are actually contributing, to the utilities of the animal itself. Other fluids seem to be separated only to be rejected. That this also is necessary, (though why it was originally necessary, we cannot tell,) is shown by the consequence of the separation being long suspended; which consequence is disease and death. Akin to secretion, if not the same thing, is assimilation, by which one and the same blood is converted into bone, muscular flesh, nerves, membranes, tendons; things as different as the wood and iron, canvas and cordage, of which a ship with its furniture is composed. We have no operation of art wherewith exactly to compare all this, for no other reason perhaps than that all operations of art are exceeded by it. No chymical election, no chymical analysis or resolution of a substance into its constituent parts, no mechanical sifting or division, that we are acquainted with, in perfection or variety come up to animal secretion. Nevertheless, the apparatus and process are obscure; not to say absolutely concealed from our inquiries. In a few, and only a few instances, we can discern a little of the constitution of a gland. In the kidneys of large animals, we can trace the emulgent artery dividing itself into an infinite number of branches; their extremities every where communicating with little round bodies, in the substance of which bodies, the secret of the machinery seems to reside, for there the change is made. We can discern pipes laid from these round bodies towards the pelvis, which is a basin within the solid of the kidney. We can discern these pipes joining and collecting together into larger pipes: and, when so collected, ending in innumerable papillæ, through which the secreted fluid is continually oozing into its receptacle. This is all we know of the mechanism of a gland, even in the case in which it seems most capable of being investigated. Yet to pronounce that we know nothing of animal secretion, or nothing satisfactorily, and with that concise remark to dismiss the article from our argument, would be to dispose of the subject very hastily and very irrationally. For the purpose which we want, that of evincing intention, we know a great

« 前へ次へ »